Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-N-phenylbenzamide

Vinola Z. Rodrigues,^a Lenka Kucková,^b B. Thimme Gowda^{a*} and Jozef Kožíšek^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: gowdabt@yahoo.com

Received 26 October 2011; accepted 27 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.115; data-to-parameter ratio = 20.8.

In the title compound, $C_{13}H_{10}CINO$, the dihedral angle between the two benzene rings is 59.6 (1)°. The crystal structure features N-H···O hydrogen bonds, which link the molecules into C(4) chains running along the *a* axis.

Related literature

For the preparation of the title compound, see: Gowda *et al.* (2003). For our studies on the effects of substituents on the structures and other aspects of *N*-(aryl)-amides, see: Bhat & Gowda (2000); Bowes *et al.* (2003); Gowda *et al.* (2008); Saeed *et al.* (2010), on *N*-(aryl)-methanesulfonamides, see: Gowda *et al.* (2007), on *N*-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on *N*-chloro-amides, Gowda & Weiss (1994).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}\text{CINO} \\ M_r = 231.67 \\ \text{Triclinic, } P\overline{1} \\ a = 5.3934 \ (3) \\ A \\ b = 7.7679 \ (5) \\ A \\ c = 13.7831 \ (8) \\ A \\ \alpha = 105.887 \ (5)^{\circ} \\ \beta = 100.849 \ (4)^{\circ} \end{array}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Absorption correction: analytical [*CrysAlis RED* (Oxford Diffraction, 2009), based on expressions derived by Clark & Z = 2Mo K α radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 298 K $0.99 \times 0.51 \times 0.15 \text{ mm}$

 $\gamma = 90.023 \ (4)^{\circ}$

V = 544.64 (5) Å³

Reid (1995)] $T_{\min} = 0.821$, $T_{\max} = 0.953$ 8972 measured reflections 3010 independent reflections 2330 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.115$ S = 1.073010 reflections 145 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.38$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^i$	0.86	2.39	3.1987 (16)	157

Symmetry code: (i) x + 1, y, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

LK and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency of Slovakia (APVV-0202–10) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5692).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
- Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003).
- Acta Cryst. C**59**, 01–03. Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A**51**, 887–897.
- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, 02339.
- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A,
- **58**, 225–230. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). *Acta*
- *Cryst.* E64, 0769.
- Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.

supplementary materials

Acta Cryst. (2011). E67, o3171 [doi:10.1107/S1600536811045107]

4-Chloro-N-phenylbenzamide

V. Z. Rodrigues, L. Kucková, B. T. Gowda and J. Kozísek

Comment

The amide moiety is the constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of *N*-(aryl)-amides (Bhat & Gowda, 2000; Bowes *et al.*, 2003; Gowda *et al.*, 2008; Saeed *et al.*, 2010, *N*-(aryl)-methanesulfonamides (Gowda *et al.*, 2007), *N*-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and *N*-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of *N*-(phenyl)-4-chlorobenzamide (I) has been determined (Fig.1).

In (I), the N—H and C=O bonds in the C—NH—C(O)—C segment are *anti* to each other, similar to that observed in *N*-(4-chlorophenyl)-benzamide (II)(Gowda *et al.*, 2008).

The dihedral angle between the two benzene rings is $59.6 (1)^\circ$, compared to the value of $60.8 (1)^\circ$ in (II).

The packing of molecules linked by N—H…O hydrogen bonds into infinite chains is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda *et al.* (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic) and N—H = 0.86 Å. The $U_{iso}(H)$ values were set at 1.2 $U_{eq}(C$ -aromatic, N).

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H…O hydrogen bonds which are shown by dashed lines.

4-Chloro-N-phenylbenzamide

Crystal data	
C ₁₃ H ₁₀ CINO	Z = 2
$M_r = 231.67$	F(000) = 240
Triclinic, <i>P</i> T	$D_{\rm x} = 1.413 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.3934 (3) Å	Cell parameters from 3954 reflections
b = 7.7679 (5) Å	$\theta = 3.5 - 29.4^{\circ}$
c = 13.7831 (8) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\alpha = 105.887 (5)^{\circ}$	T = 298 K
$\beta = 100.849 \ (4)^{\circ}$	Plate, colourless
$\gamma = 90.023 \ (4)^{\circ}$	$0.99 \times 0.51 \times 0.15 \text{ mm}$
$V = 544.64 (5) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	3010 independent reflections
Radiation source: fine-focus sealed tube	2330 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.013$
Detector resolution: 10.4340 pixels mm ⁻¹	$\theta_{\text{max}} = 29.4^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: analytical [<i>CrysAlis RED</i> (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]	$k = -10 \rightarrow 10$
$T_{\min} = 0.821, \ T_{\max} = 0.953$	$l = -18 \rightarrow 18$
8972 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.2195P]$ where $P = (F_o^2 + 2F_c^2)/3$
3010 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

145 parameters	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.0813 (3)	0.2427 (2)	0.47100 (11)	0.0338 (3)
C2	0.0923 (3)	0.24248 (19)	0.36321 (11)	0.0309 (3)
C3	0.2913 (3)	0.3259 (2)	0.33873 (12)	0.0354 (3)
H3A	0.4279	0.3806	0.3902	0.042*
C4	0.2871 (3)	0.3280 (2)	0.23842 (12)	0.0381 (3)
H4A	0.4191	0.3849	0.2223	0.046*
C5	0.0845 (3)	0.2446 (2)	0.16262 (11)	0.0368 (3)
C6	-0.1146 (3)	0.1601 (2)	0.18473 (12)	0.0394 (3)
H6A	-0.2494	0.1037	0.1328	0.047*
C7	-0.1100 (3)	0.1608 (2)	0.28539 (12)	0.0358 (3)
H7A	-0.2442	0.1058	0.3013	0.043*
C8	0.3529 (3)	0.25180 (19)	0.63918 (11)	0.0302 (3)
С9	0.1937 (3)	0.3348 (2)	0.70443 (11)	0.0352 (3)
H9A	0.0466	0.3833	0.6787	0.042*
C10	0.2563 (3)	0.3443 (2)	0.80795 (12)	0.0397 (3)
H10A	0.1506	0.4001	0.8518	0.048*
C11	0.4737 (3)	0.2720 (2)	0.84716 (12)	0.0421 (4)
H11A	0.5144	0.2794	0.9169	0.050*
C12	0.6304 (3)	0.1886 (2)	0.78171 (13)	0.0410 (4)
H12A	0.7766	0.1392	0.8076	0.049*
C13	0.5711 (3)	0.1780 (2)	0.67819 (12)	0.0352 (3)
H13A	0.6771	0.1216	0.6346	0.042*
N1	0.3086 (2)	0.24555 (17)	0.53357 (9)	0.0340 (3)
H1A	0.4398	0.2433	0.5063	0.041*
01	-0.1215 (2)	0.2392 (2)	0.49853 (9)	0.0507 (3)
Cl1	0.07987 (11)	0.24911 (8)	0.03678 (3)	0.06247 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0306 (7)	0.0405 (8)	0.0314 (7)	0.0001 (6)	0.0075 (5)	0.0109 (6)
C2	0.0292 (6)	0.0351 (7)	0.0299 (7)	0.0041 (5)	0.0073 (5)	0.0105 (5)
C3	0.0301 (7)	0.0422 (8)	0.0342 (7)	-0.0018 (6)	0.0043 (6)	0.0126 (6)
C4	0.0367 (7)	0.0430 (8)	0.0397 (8)	0.0003 (6)	0.0129 (6)	0.0161 (7)
C5	0.0436 (8)	0.0413 (8)	0.0284 (7)	0.0086 (6)	0.0109 (6)	0.0121 (6)
C6	0.0364 (8)	0.0465 (8)	0.0317 (7)	-0.0011 (6)	0.0025 (6)	0.0080 (6)
C7	0.0294 (7)	0.0439 (8)	0.0347 (7)	-0.0020 (6)	0.0066 (6)	0.0116 (6)
C8	0.0285 (6)	0.0340 (7)	0.0292 (7)	-0.0019 (5)	0.0058 (5)	0.0106 (5)
C9	0.0306 (7)	0.0427 (8)	0.0339 (7)	0.0052 (6)	0.0082 (6)	0.0121 (6)
C10	0.0376 (8)	0.0496 (9)	0.0334 (8)	0.0020 (6)	0.0131 (6)	0.0101 (7)
C11	0.0410 (8)	0.0565 (10)	0.0313 (7)	-0.0044 (7)	0.0053 (6)	0.0177 (7)
C12	0.0319 (7)	0.0517 (9)	0.0427 (9)	0.0034 (6)	0.0031 (6)	0.0217 (7)
C13	0.0301 (7)	0.0414 (8)	0.0368 (8)	0.0041 (6)	0.0095 (6)	0.0132 (6)
N1	0.0285 (6)	0.0470 (7)	0.0293 (6)	0.0034 (5)	0.0081 (5)	0.0135 (5)
01	0.0287 (5)	0.0897 (10)	0.0361 (6)	-0.0018 (6)	0.0085 (4)	0.0204 (6)
Cl1	0.0798 (4)	0.0789 (4)	0.0331 (2)	0.0003 (3)	0.0155 (2)	0.0199 (2)

Geometric parameters (Å, °)

C1—O1	1.2257 (17)	C8—C13	1.390 (2)
C1—N1	1.3558 (19)	C8—C9	1.391 (2)
C1—C2	1.4976 (19)	C8—N1	1.4173 (17)
C2—C7	1.389 (2)	C9—C10	1.384 (2)
C2—C3	1.3933 (19)	С9—Н9А	0.9300
C3—C4	1.383 (2)	C10-C11	1.382 (2)
С3—НЗА	0.9300	C10—H10A	0.9300
C4—C5	1.380 (2)	C11—C12	1.384 (2)
C4—H4A	0.9300	C11—H11A	0.9300
C5—C6	1.382 (2)	C12—C13	1.382 (2)
C5—Cl1	1.7398 (15)	C12—H12A	0.9300
C6—C7	1.382 (2)	С13—Н13А	0.9300
С6—Н6А	0.9300	N1—H1A	0.8600
С7—Н7А	0.9300		
O1—C1—N1	123.61 (14)	C13—C8—C9	119.85 (13)
O1—C1—C2	121.13 (13)	C13—C8—N1	117.54 (12)
N1—C1—C2	115.26 (12)	C9—C8—N1	122.54 (13)
C7—C2—C3	119.09 (13)	C10—C9—C8	119.35 (14)
C7—C2—C1	118.05 (12)	С10—С9—Н9А	120.3
C3—C2—C1	122.82 (13)	С8—С9—Н9А	120.3
C4—C3—C2	120.48 (14)	C11—C10—C9	120.98 (14)
С4—С3—Н3А	119.8	C11-C10-H10A	119.5
С2—С3—НЗА	119.8	С9—С10—Н10А	119.5
C5—C4—C3	119.13 (14)	C10-C11-C12	119.37 (15)
C5—C4—H4A	120.4	C10-C11-H11A	120.3

C2 C4 H4A	120.4	C12 C11 H11A	120.2
С3—С4—п4А	120.4		120.3
C4—C5—C6	121.55 (14)	C13—C12—C11	120.46 (14)
C4—C5—C11	118.82 (12)	C13—C12—H12A	119.8
C6—C5—Cl1	119.62 (12)	C11—C12—H12A	119.8
C7—C6—C5	118.82 (14)	C12—C13—C8	119.98 (14)
С7—С6—Н6А	120.6	C12—C13—H13A	120.0
С5—С6—Н6А	120.6	C8—C13—H13A	120.0
C6—C7—C2	120.92 (13)	C1—N1—C8	126.94 (12)
С6—С7—Н7А	119.5	C1—N1—H1A	116.5
С2—С7—Н7А	119.5	C8—N1—H1A	116.5
O1—C1—C2—C7	-28.3 (2)	C1—C2—C7—C6	178.28 (14)
N1—C1—C2—C7	151.19 (14)	C13—C8—C9—C10	0.7 (2)
O1—C1—C2—C3	149.28 (16)	N1-C8-C9-C10	-176.47 (14)
N1-C1-C2-C3	-31.2 (2)	C8-C9-C10-C11	-0.3 (2)
C7—C2—C3—C4	0.3 (2)	C9-C10-C11-C12	-0.2 (2)
C1—C2—C3—C4	-177.34 (14)	C10-C11-C12-C13	0.3 (2)
C2—C3—C4—C5	-0.7 (2)	C11—C12—C13—C8	0.1 (2)
C3—C4—C5—C6	0.4 (2)	C9—C8—C13—C12	-0.6 (2)
C3—C4—C5—Cl1	179.60 (12)	N1-C8-C13-C12	176.70 (13)
C4—C5—C6—C7	0.4 (2)	O1—C1—N1—C8	-2.5 (3)
Cl1—C5—C6—C7	-178.78 (12)	C2-C1-N1-C8	177.96 (13)
C5—C6—C7—C2	-0.9 (2)	C13—C8—N1—C1	152.65 (15)
C3—C2—C7—C6	0.6 (2)	C9—C8—N1—C1	-30.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O1 ⁱ	0.86	2.39	3.1987 (16)	157.
Symmetry codes: (i) $x+1$, y , z .				

